Entanglement-enhanced nanoscale single-spin sensing
Короткое резюме
Недавно команда Ду Цзянфэна из Научно-технического университета Китая раскрыла метод наноразмерного сенсоринга одиночных спинов с усилением за счёт квантовой запутанности. Результаты данного исследования были опубликованы в журнале Nature 26 ноября 2025 года.
Обнаружение одиночных спинов (включая стабильные и метастабильные состояния) представляет собой фундаментальную задачу в области квантового сенсоринга, с приложениями, широко охватывающими физику конденсированного состояния, квантовую химию и магнитно-резонансную визуализацию отдельных молекул. Хотя азотно-примесные центры (NV-центры) в алмазе уже развились в мощные наноразмерные сенсоры, их производительность в детектировании одиночных спинов по-прежнему ограничена значительным уровнем шумов окружающей среды и ограниченным объёмом сенсорного взаимодействия.
Исследовательская группа предложила и подтвердила сенсорный протокол на основе усиления через запутанность, который преодолевает указанные ограничения посредством стратегического использования запутанных NV-пар. Этот метод при комнатной температуре обеспечивает чувствительность, в 3.4 раза превышающую таковую у одиночного NV-центра, и повышение пространственного разрешения в 1.6 раза. Протокол использует тщательно разработанные запутанные состояния для усиления сигнала целевого спина за счёт квантовой интерференции, одновременно подавляя шумы окружающей среды. Ключевым достижением является расширение этой технологии для анализа динамики метастабильных одиночных спинов. Идентифицируя зависимую от спинового состояния силу связи, удалось непосредственно наблюдать случайные переходы между различными спиновыми состояниями. Эта двойная функциональность делает возможным одновременное детектирование статических и динамических спиновых видов, открывая новые пути для характеризации сложных квантовых систем. Показатели производительности, достигнутые в данном исследовании, утверждают усиление сенсоринга посредством запутанности как работоспособный метод для атомарной характеризации квантовых материалов и интерфейсов.
Текст сгенерирован с использованием ИИ
Аннотация
Detecting individual spins—including stable and metastable states—represents a fundamental challenge in quantum sensing, with broad applications across condensed matter physics, quantum chemistry and single-molecule magnetic resonance imaging. Although nitrogen–vacancy (NV) centres in diamond have emerged as powerful nanoscale sensors, their performance for single-spin detection remains constrained by substantial environmental noise and restricted sensing volume. Here we propose and demonstrate an entanglement-enhanced sensing protocol that overcomes these limitations through the strategic use of entangled NV pairs. Our approach achieves a 3.4-fold enhancement in sensitivity and a 1.6-fold improvement in spatial resolution relative to single NV centres under ambient conditions. The protocol uses carefully engineered entangled states that amplify target spin signals through quantum interference while suppressing environmental noise. Crucially, we extend these capabilities to resolve metastable single-spin dynamics, directly observing stochastic transitions between different spin states by identifying state-dependent coupling strengths. This dual functionality enables simultaneous detection of static and dynamic spin species for studying complex quantum systems. The achieved performance establishes entanglement-enhanced sensing as a viable pathway towards atomic-scale characterization of quantum materials and interfaces.
Обсуждений пока нет
Будьте первым, кто задаст вопрос или предложит тему для обсуждения этой научной работы.

