Scientific publication

00:00
Голос Науки
Голос Науки
...
Journal Article
Nov, 2025

Entanglement-enhanced nanoscale single-spin sensing

Xu Zhou, Mengqi Wang, Xiangyu Ye, Haoyu Sun, Yuhang Guo, Shuo Han, Zihua Chai, Wentao Ji, Kangwei Xia, Fazhan Shi, Ya Wang, Jiangfeng Du

PDF
DOI: doi:10.1038/s41586-025-09790-6

Short Summary

Недавно команда Ду Цзянфэна из Научно-технического университета Китая раскрыла метод наноразмерного сенсоринга одиночных спинов с усилением за счёт квантовой запутанности. Результаты данного исследования были опубликованы в журнале Nature 26 ноября 2025 года.

Обнаружение одиночных спинов (включая стабильные и метастабильные состояния) представляет собой фундаментальную задачу в области квантового сенсоринга, с приложениями, широко охватывающими физику конденсированного состояния, квантовую химию и магнитно-резонансную визуализацию отдельных молекул. Хотя азотно-примесные центры (NV-центры) в алмазе уже развились в мощные наноразмерные сенсоры, их производительность в детектировании одиночных спинов по-прежнему ограничена значительным уровнем шумов окружающей среды и ограниченным объёмом сенсорного взаимодействия.

Исследовательская группа предложила и подтвердила сенсорный протокол на основе усиления через запутанность, который преодолевает указанные ограничения посредством стратегического использования запутанных NV-пар. Этот метод при комнатной температуре обеспечивает чувствительность, в 3.4 раза превышающую таковую у одиночного NV-центра, и повышение пространственного разрешения в 1.6 раза. Протокол использует тщательно разработанные запутанные состояния для усиления сигнала целевого спина за счёт квантовой интерференции, одновременно подавляя шумы окружающей среды. Ключевым достижением является расширение этой технологии для анализа динамики метастабильных одиночных спинов. Идентифицируя зависимую от спинового состояния силу связи, удалось непосредственно наблюдать случайные переходы между различными спиновыми состояниями. Эта двойная функциональность делает возможным одновременное детектирование статических и динамических спиновых видов, открывая новые пути для характеризации сложных квантовых систем. Показатели производительности, достигнутые в данном исследовании, утверждают усиление сенсоринга посредством запутанности как работоспособный метод для атомарной характеризации квантовых материалов и интерфейсов.

Text generated using AI

Abstract

Detecting individual spins—including stable and metastable states—represents a fundamental challenge in quantum sensing, with broad applications across condensed matter physics, quantum chemistry and single-molecule magnetic resonance imaging. Although nitrogen–vacancy (NV) centres in diamond have emerged as powerful nanoscale sensors, their performance for single-spin detection remains constrained by substantial environmental noise and restricted sensing volume. Here we propose and demonstrate an entanglement-enhanced sensing protocol that overcomes these limitations through the strategic use of entangled NV pairs. Our approach achieves a 3.4-fold enhancement in sensitivity and a 1.6-fold improvement in spatial resolution relative to single NV centres under ambient conditions. The protocol uses carefully engineered entangled states that amplify target spin signals through quantum interference while suppressing environmental noise. Crucially, we extend these capabilities to resolve metastable single-spin dynamics, directly observing stochastic transitions between different spin states by identifying state-dependent coupling strengths. This dual functionality enables simultaneous detection of static and dynamic spin species for studying complex quantum systems. The achieved performance establishes entanglement-enhanced sensing as a viable pathway towards atomic-scale characterization of quantum materials and interfaces.

Full text: https://www.nature.com/articles/s41586-025-09790-6
InfoAuthorsDiscussions

We recommend that you study

Golos Nauki Logo
Home page
Support Project
Sections
Быстрый доступ
  • Author's interview
  • Video Abstracts
Sponsor
* is not an advertisement
Presentation
Information

    Phone: 8 (800) 350 17-24email: office@golos-nauki.ru
    Sign Up
    Information
    Date of publication: 26 Nov, 2025Number of views: 15
    Full text: www.nature.com
    To quote:

    Zhou, X., Wang, M., Ye, X. et al. Entanglement-enhanced nanoscale single-spin sensing. Nature 647, 883–888 (2025). https://doi.org/10.1038/s41586-025-09790-6

    copied
    Scientific Journal
    Nature

    2025, №8091. C. 883

    This journal has not yet been added to the platform